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ABSTRACT

In this work, a natural frequency of composite laminated plate presented, with different size and location of
delamination effect, through long and width of composite plate in addition to effect of delamination through the thickness
of plate. The composite plate studied made of woven reinforcement glass fiber and polyester resin with eight layer with
different delamination through the plate. The natural frequency of woven composite plate calculated by using experimental
work for different aspect ratio and boundary conditions of plate and compare the experimental results with numerical study
by using of finite element method with using of ANSYS program. The natural frequency of woven laminated plate are
evaluated by analysis the acceleration signal evaluated by experimental work with fast Fourier transformation by using of
sig-view program, to evaluated natural frequency of plate by FFT method. The resulted of natural frequency with
delaminated effect show that the delamination decreasing of natural frequency of plate and decreasing the stiffhess of plate.
The compare of experimental with numerical results given good agreement with maximum error about 5.8% and minimum

error about 2.3%.

KEYWORDS: Delamination Effect, Vibration Composite Plate with Delamination, Internal Crack Effect, Defect Effect,
Plate with Defect Effect, Vibration with Delamination Effect

INTRODUCTION

Key components of primary aircraft structures, such as wingskins, are currently being designed using laminated
composites. Although the structural designer is interested in the global behavior of these structures, very often phenomena

such as impact loading, varying geometrical features, such as tapering, etc. have localized structural effects, [3].

As the increase in the application of composite materials to the primary loading structures, the refined strength
evaluations and stress predictions are required. For the enhanced analysis of laminated composite plates, three types of
higher-order theory have been developed. Vibration problems of delaminated beam/plate were analyzed by numerous
researchers. Classical beam model, first-order shear deformation model, and higher-order shear model with piezo-layers
are employed for the natural frequency analysis, [2].

For the analysis of laminated plates with arbitrary shaped multiple delaminations, finite element method is a
suitable choice to treat the general loading, boundary conditions, layups, and geometry. Even though finite element based
on layer-wise plate theory can provide an adequate framework for the delamination analysis, this theory is not

computationally efficient since the number of degrees-of-freedom of this theory depend upon the number of layers, [2].

E. J. Barbero and J. N. Reddy [1], the layer-wise laminate theory of Ruddy is extended to account for multiple
delaminations between layers and the associated computational model is developed delaminations between layers of

composite plates are modeled by jump discontinuity conditions at the interfaces.
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M. Cho and J.-S. Kim [2], presented A higher-order zig-zag theory has been developed for laminated composite
plates with multiple delaminations. By imposing top and bottom surface transverse shear stress-free conditions and
interface continuity conditions of transverse shear stresses including delaminated interfaces, the displacement field with
minimal degree-of-freedoms are obtained. This displacement field can systematically handle the number, shape, size, and
locations of delaminations. Through the dynamic version of variational approach, the dynamic equilibrium equations and
variationally consistent boundary conditions are obtained. The delaminated beam finite element is implemented to evaluate

the performance of the newly developed theory.

S.L. Angioni, A. Visrolia, and M. Meo [3], in this work, the displacement field is represented as the
superposition of a number of plate fields, and a unifying strain field is derived. By appropriately defining boundaries to the
‘enhancing’ displacement fields, it is demonstrated that the superposition of displacement fields can be used to locally
enrich the solution where more information is required. In this manner, an efficient global model can be used to determine
gross displacements, and an enriching model can be used to determine stresses at lamina interfaces for the accurate
prediction of localized phenomena. The proposed theoretical framework would allow an analyst to study both thin and

thick walled laminated structures by introducing simple switch-over criteria between single and multiple layer theories.

Yang Jinhua, Fu Yiming [4], By introducing the Heaviside step function into the assumed displacement
components and using the Rayleigh—Ritz method for minimizing the total potential energy, a set of dynamic governing
equations for the delaminated cylindrical shells is derived. Then, the dynamic governing equations are written as the
Mathieu-type equations to describe the parametric vibrating behavior of the shells, and these equations are solved by

employing the Bolotin method.

In this research evaluated of the natural frequency of composite woven laminated plate with different aspect ratio
and boundary condition of plate with effect of delamination with different size of delamination. The natural frequency
evaluated by experimental study and compare the results with numerical results evaluated by using of finite element
method with using Ansys Ver. 14.

EXPERIMENTAL WORK

The experimental work include vibration test to calculate the fundamental natural frequency of woven composite
laminated plate with and without delamination effect for different aspect ratios, and boundary conditions of composite

plate and with different delamination size and location effect.

The woven composite plate sample using in experimental study with delamination effect shown in the Figure 1,
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a) Dimensions and Shape of Laminated Plate with Delamination
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Figure 1: Shape and Dimensions of Plates Samples and Delamination

The dimensions of laminated plate used are, as shown in Figure 2,
a; = a+ 10 cm (Supported) — Length of Plate
b; = b + 10 cm (Supported) — Width of Plate Q)
where,
b = 24 cm, b, = 24 cm + 10 cm (Supported) = 34 cm, t = 6.5 mm
And for difference aspect ratio (a/b), as,
a; = a+ 10 cm (Supported) = (a/b).b + 10 cm (Supported)
a; = 58 cm — for (a = 48 cm) aspect ratio = 2
a, = 46 cm — for (a = 36 cm) aspect ratio = 1.5
a; = 34 cm — for (a = 24 cm) aspect ratio = 1 2

And the dimensions of delamination for different aspect ratio of plate are,

2.4 cm — for aspect ratio = 1
aq — Length of Delamination = 10% from lenght of plate = {3.6 cm — for aspect ratio = 1.5
4.8 cm — for aspect ratio = 2

4.8 cm — for aspect ratio = 1
aq — Length of Delamination = 20% from lenght of plate = {7.2 cm — for aspect ratio = 1.5
9.6 cm — for aspect ratio = 2

7.2 cm — for aspectratio = 1
aq — Length of Delamination = 30% from lenght of plate = {10.8 cm — for aspect ratio = 1.5
14.4 cm — for aspect ratio = 2

bgq — Width of Delamination = 10% form width of plate = 2.4 cm 3)

And, the location of different delamination size shown in equation (3), through length; width; and thickness of
woven composite laminated plate, are show in the Table 1.
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Table 1: Location of Delamination Studied through Thickness, Length, and Width of Laminated Plate

Location of Delamination | Location of Delamination | Location of Delamination
through Thickness of Plate | through Length of Plate through Width of Plate
0.25*b
0.25*a 0.5*h
0.75b
x|
Layer 1-2, Layer 2-3, - 0'25* b
Layer 3-4, or Layer 4-5 0.5% 0.5%
yer -2, orLay 0.75b
0.25*b
0.75a 0.5*h
0.75b
And, the weight required of composite plate samples can be calculated by,
Weight of Fiber = p, * V, * V;
Weightof Resin = p_ * V *V,
Vi=ag*x by *t (4)

Where, p,, p,, are mass density of woven fiber and polyester resin, respectively, defied as, [11],

Density of Woven Glass Fiber = 2400 kg/m?

Density of Polyester Resin = 1000 kg/m3 (5)
V¢, V., are volume fraction of reinforcement fiber and resin, respectively. And Vv, is total plate volume.

Then, the weight required of woven reinforcement glass fiber and polyester resin for composite plate samples

defined in Table 2 for different aspect ratio of plate, volume fraction of woven fiber 30%and 6.5 mm plate thickness and

with plate compound from eight layer.

Table 2: Required Weight (g) for Woven Reinforcement Fiber and Polyester Resin for Composite Laminated Plate

Sample with Fiber Volume Fraction of 30% and Plate Thickness H = 6.5 mm

Aspect | Woven Reinforcement | Polyester
Ratio Glass Fiber (g) Resin (g)
2 923 897
15 732 712
1 541 526

The vibration of woven composite plate with delamination effect samples studied are supported with different

b
a

boundary conditions, as shows in the Figure 3, of different aspect ratios, (— =1,15, 2),

Cantilever plate supported (CFFF).

Clamped supported along x = 0 and 1 edges and free support along y = 0 and 1 edges (CCFF).
The composed parts of the vibration structure rig, shown in the Figure 4, are:

Structure to support the plate sample,

Support of fixed plate sample.

Impact hammer tool, model (086C03) (PCB Piezotronics vibration division), with the information about

measurement range (2224 N), resonant frequency (= 22 kHz ), excitation voltage (20 to 30 VDC), constant
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current excitation (2 to 20 mA), output bias voltage (8 to 14 VDC), discharge time constant (= 2000 sec),
hammer mass (0.16 kg), head diameter (1.57 cm), tip diameter (0.63 cm), and hammer length (21.6 cm).

Impulse force test hammer is adapted for adapts FFT analysis of structure behavior testing. Impulse testing of the

dynamic behavior of mechanical structure involves striking the test object with the force-instrumented hammer, and

measuring the resultant motion with an accelerometer.

Accelerometer, model (4371), with the information; lower frequency (determined by the amplifier used), upper
frequency limit (+10%) (12.6 kHz), mounted resonance frequency (42 kHz), and weight (11 g).

Amplifier, type 7749, the amplifier measures the response signal from accelerometer and gives output signal to
the digital storage oscilloscope.

Digital storage oscilloscope, modal GDS-810, with the information; maximum frequency (100 MHz), maximum
read of sample per second (25 GS/s), FFT spectrum analysis, and two input channels, this digital storage

oscilloscope system can be driven with a computer (by using the RS-232 serial connection).

Then analysis of response signal is read from digital storage oscilloscope to FFT function by using sig-view

program to get the fundamental natural frequency of the plate with different parameters studied, as shown in the Figure 7.

The flow chart in Figure 5 shows the sketch of the vibration structure rig shown in Figure 4, its test the plate

sample used to evaluate the fundamental natural frequency with different delamination size and location effect for different

aspect ratio and boundary condition of plate.

a, !
Figure 2: Dimensions and Shape of Woven Composite Laminated Plate with Delamination Effect

Clamped Supported

a) Clamped-Clamped, Free-Free Plate Supported b) Cantileer Plate Supported
Figure 3: Supported of Woven Composite Plate Studied with Delamination Effect
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Digital Storage
Charge Amplifiers Part Impact Hammer Part ~ Oscilloscope Part Computer Part

Structure Vibration Part Accelerometer Part Sample Plate Part Supported Part
Figure 4: Rig Vibration Test of Plate

Steps of Vibration, measurement of Matural frequency, test for "Wowven Compo site Plate with
Delamination Effect

é

Infade of composite plate and delamination in the plate, Figure 5.

é

é

Supported the Accelerometer parte at the plate, Figure 6.

“

[ Selected supported types of plate and supported of compesite plate as in Figure 2.
[ Connected the accelerometer with amplifiers parte

é

[ Connected the impact hummer and amplifiers with the digital storage oscilloscope parte. ]

“

[ Connected the digital storage oscilloscope with Computer parte ]

&

[ Input the signal by impact load subjected with impact hummer part ]

&

[ cutput the signal bv Accelerometer-amplifiers-digital storage oscilloscope-Computer parts ]

a

Arnalysizs of signal with sig-wiew program by using of fast Feourier transformationts evaluated

natural frequency of plate by FFT method

[ Finishing ]

Figure 5: Flow Chart of Testing Steps for Evaluated the Natural Frequency of Woven Composite Plate with
Delamination Effect by Experimental Work
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Figure 6: Different Accelerometer Location of Composite Plate
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Figure 7: Analysis of Digital Storage Oscilloscope Signal by FFT Function with Sig-View Program
NUMERICAL STUDY

To assess the validity of the proposed theory, a finite element isdeveloped for one-dimensional problems. The

primary displacementunknowns are expressed in terms of nodal values and shape functions as follows, [2],

n

(007) = Y {i [@e @ () )

m=1

n
w = Z P W)y + Hepy (W,x)m + Hyp, (W.y)m
m=1

—_ — i i

wi=ynr_, {Pm (w} )m + H,, (W"‘)m + Hyp, (wy)m} (6)

Where n is the number of nodes in a typical finite element. N,, isa Lagrangian interpolation function and
Py , Hyy , Hyy, are Hermiteinterpolation functions. In this study, we used a two-nodes beam element with one-dimensional

linear Lagrangian interpolation functions for u2, @, u’,and Hermite interpolation functionsforw, w’.
The finite element model of the natural vibration problem can be expressed as follows, [2],
(K] — w?[MD{u} = {0} ()

Where [K] and [M] are the stiffness matrix and the mass matrix. The parameters @ and {u} denote the natural
frequency, and the eigenvector of nodal displacements corresponding to an eigenvalue, respectively. To solve Eq. 7 needed
analysis of stress strain relation of laminated plate with delamination effect and evaluated of forces and moment results on
the plate, then evaluated the general equation of motion of plate and solve equation to evaluated the natural frequency of
plate. Then, this solution can be evaluated by using of the numerical study with finite element method to fine the natural

frequency by using ANSYS ver. 14. Where Figure 8 shown the elements and nodes analysis about delamination in plate.
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Delamination

a) Elements Analysis of Plate with b) Nodes Analysis of Plate with
Delamination Effect Delamination Effect
Figure 8: Mash of Plate with Delamination Effect

RESULTS AND DISCUSSIONS

The vibration results of composite plates includes the evaluation of the natural frequency of composite plate,
made of polyester resin and woven glass fiber with fiber volume fraction V=30%, with delamination effect of plate,
included the effect of delamination size, delamination location, and other parameters of composite plate as aspect ratio and
boundary condition of plate. Where the mechanical properties of each layer of woven composite plate lamina, with 30%

woven Reinforcement Glass fiber and 70% polyester resin volume fraction, are, [11],
E, = E, = 18.25 Gpa, , G;, = 1.96 Gpa,
p = 1420 kg/m3, v;, = 0.355 (8)

The method studied to evaluated the natural frequency of composite plate with delamination effect are,

experimental study and numerical study, by using ANSYS Program Version 14,

The experimental work includes the study of the delamination effect of woven composite plate with different
delamination size (length of delamination in x-direction with width of delamination in y-direction equal to 10%b=2.4 cm),
different delamination position (in x and y-directions and location through thickness of laminated plate), different plate
dimensions (aspect ratio, plate length) and different boundary conditions of plate (cantilever plate CFFF, clamped
supported through x = 0 and 1 edges and free supported along y = 0 and 1 edges CCFF, and Clamped supported through
all edges CCCC).

The experimental results are compared with those obtained numerically by using the ANSYS Program
(Version 14) for each parameters effect studied as shown in Figures 9 to 12. Where, the figures shown the maximum error
between experimental and numerical results about (5.8 %). The effect of delamination size as length and depth of
delamination for woven reinforcement composite plate with different aspect ratios and boundary conditions, with different
location of delamination through x and y-direction are shown in figures 13 and 14. And the study of delamination position
in x and y-directions effect of woven composite plate with different boundary conditions and aspect ratio of composite

plate are shown in figures 15 and 16 fordelamination sizea; = 30%a and b; = 10%b.

From Figures 9 to 16 shows the following effect of the delamination on the natural frequency of plate with

delamination effect,
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e Effect of Delamination Position (x and y-Direction)

The natural frequency of composite plate decreasing with move delamination position near the middle location
plate, since the stiffness of plate is decreasing with the moving the delamination to the middle plate location, then
deceasing of the natural frequency of plate, as shown in Figures 15 to 16, with different aspect ratio of composite plate, and

boundary condition effect.
o Delamination Size Effect (Length and Depth of Delamination)

The natural frequency of composite plate is decreasing with the increasing of the delamination size as length of
delamination or location near the centre through the thickness of plate depth since the delamination cause decreasing of the
stiffness of plate, then cause decreasing of the natural frequency of plate, as shown in Figures 13 and 14 with different

aspect ratio of composite plate, boundary condition effect, and location through x and y-direction of delamination.

o Effect of Aspect Ratio of Plate,

The natural frequency of composite plate is decreasing with the increasing of aspect ratio due to the increasing of
the mass for composite plate, then decreasing of the natural frequency of plate as shown in Figures 9 to 16 with different

parameters of delamination effect.
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Figure 11: Compare between Experimental and Numerical Study for Composite Plate, for Different Aspect Ratio,
Boundary Conditions, and Delamination Size Effect, with Middle Delamination Location through Thickness,
between Layers 4-5, and 0.25*a Delamination Location through x-Direction Effect
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Figure 12: Compare between Experimental and Numerical Study for Composite Plate, for Different Aspect Ratio,
Boundary Conditions, and Delamination Size Effect, with Middle Delamination Location through Thickness,
between Layers 4-5, and Middle Delamination Location through x-Direction, 0. 5*a, Effect
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Figure 13: Natural Frequency Results for Composite Plate, for Different Aspect Ratio, Boundary Conditions,
Delamination Size and Location through Thickness Effect, with (0.25*a) Delamination Location through
x-Direction and Diffraction Delamination Location in y-Direction Effect
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Figure 14: Natural Frequency Results for Composite Plate, for Different Aspect Ratio, Boundary Conditions,
Delamination Size and Location through Thickness Effect, with middle Delamination Location through x-Direction
(0. 5*a) and Diffraction Delamination Location in y-Direction Effect
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CONCLUSIONS

The dynamics of the composite plate with delamination has been discussed. The procedure has been used to

characterize the effect of delamination on the frequencies of woven composite laminates plate with eight layers. The

effects of number, placemen, and size of delamination on the dynamic response were studied. The following important

observations are made from the present study:

The natural frequencies obtained using the developed model correlates well with both experimental results and

results obtained using finite element method by ANSY'S program.
With increase of aspect ratio, the natural frequency decreases

With increase of % delamination, the natural frequency decreases. This is due to reduction in stiffness caused by

delamination.

Local internal delamination has slight effect on the natural frequencies of a multi-layer composite plate although
the extent of the natural frequency variation increases with both the delamination dimension and the order of the

natural frequency.
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